24 Well-Plate Stimulation

1. Each well should have:
 - 50,000 cells/mL
 - Volume: 1 mL

2. Before embarking on your stimulations, plate the 16 wells shown with arrows with the above cell numbers
 - Label the cover of the plate as shown above to keep track of your stimulations
 - Note: The last column is negative control which is essentially complete medium (16 wells with cells + 4 wells with medium only = 20 wells)

3. Use dilution formula:
 - Let’s assume your stock cell concentration is 7×10^6 cells/mL and you will be preparing 18 mL (always prepare some extra) of cell suspension at a final cell concentration of 1×10^6 cells/mL

 \[C_1V_1 = C_2V_2 \]
 \[V_1 = \frac{(0.050 \times 18 \text{ mL})}{7} = 0.128 \text{ mL} \]
 i.e Mix 0.128 mL stock cell suspension with 17.872 mL complete medium.
 Total is 18 mL

4. Aliquot 1 mL in each well (use 1 mL pipettor, accuracy is important)
 - Shake tube continuously to avoid cell precipitation at the bottom of tube
| | Proceed with LPS stimulation at 100 ng/mL. Use dilution formula, you will be given the LPS stock concentration
| | Example: if stock concentration is 1 mg/mL it means 1000 ng/µL
| | Use dilution formula: \(C_1 V_1 = C_2 V_2 \)
| | \(V_1 = \frac{C_2 V_2}{C_1} = \frac{(100 \text{ ng/mL} \times 1000 \text{ µL})}{1000 \text{ ng/µL}} \)
| | Note the units of \(C_2 \) and \(C_1 \) are not the same, multiply denominator with 1000 µL/mL to change
| | \(V_1 = 0.1 \muL \), this is smaller than our P2 pipettor can handle
| | | Dilute x100 the LPS stock concentration
| | | You will end up needing 10 µL per well after x100 dilution
| | | This is a reasonable volume
| | Aliquot 10 µL (use P20 pipettor) in each of the wells designated on the diagrams as 100 ng/mL
| | | For 10 ng/mL wells, you do not need to recalculate
| | | Simply make a x10 dilution of the previous dilution
| | | Make sure you end up with enough for at least 6 wells
| | | Example: Use 10 µL + 90 µL medium = 100 µL total (you will only end up using 60 µL for the 6 wells)
| | | Aliquot 10 µL per well
| | Repeat for 1 ng/mL as above
| | Negative Control is just the medium you use for culturing cells. You should not be detecting anything in the supernatants of this group
| | Cover plate and place in the CO\(_2 \) incubator
| | Collect supernatants in 24 hrs.
| | Note: Some proteins take longer, some shorter
| Before collecting supernatants:
| | Label lids (use thin tip marker) of 1.5 mL microcentrifuge tubes and place in a rack
| Tilt plate 45 degrees and using the 1 mL pipettor, carefully remove ~800 µL supernatant
| Change tips when moving to a different treatment
| | Save supernatants in −80 degrees Celsius freezer for long term storage