Biomechanics of Human Bone Growth and Development

Stiffness & Compressive Strength

- **Stiffness**
 - Stress/strain in a loaded material
 - Stress divided by the relative change in shape

- **Compressive Strength**
 - Ability to resist compression

Calcium

- Calcium carbonate
- Calcium phosphate

Contribute to stiffness and compressive strength in bone

Collagen

- Contributes to flexibility and tensile strength in bone
- Collagen is progressively lost with age
- Loss of collagen causes bone brittleness

Other Factors Effecting Bone Strength

- **Water Content**
 - Usually comprises 25%-30% of bone weight

- **Bone Porosity**
 - Amount of bone volume filled with pores or cavities

Bone Categories: *based on porosity*

- **Cortical Bone**
 - Compact mineralized bone
 - Low porosity
 - Found in shafts of long bones

- **Trabecular Bone**
 - Aka cancellous or spongy bone
 - Less compact
 - High porosity
 - Found in the ends of long bone and vertebrate
Bone Structure: *typical long bone*

- Endosteum
- Cortical bone
- Marrow
- Periosteum
- Trabecular bone
- Cortical bone

Proximal epiphysis
- Epiphyseal plate
- Trabecular bone

Diaphysis
- Nutrient artery
- Medullary cavity

Distal epiphysis
- Epiphyseal plate

Effects of Bone Porosity

- Cortical bone can withstand more stress but less strain
 - Less porous
- Trabecular bone can undergo more strain before fracturing
 - More porous

Structure Effects Strength

- Bone is anisotropic
 - Bone has different strength and stiffness depending on direction of the load
- Bones are unique to each individual

Axial Skeleton

- Skull
- Vertebrate
- Sternum
- Ribs

Appendicular Skeleton

- Bones Composing the body appendages
 - Shoulder Girdle
 - Upper Extremities
 - Pelvic Girdle
 - Lower extremities

Bone Types

- Short Bones
- Flat Bones
- Irregular Bones
- Long Bones
Short Bones
- Approximately cubical
 - Carpals
 - Tarsals

Flat Bones
- Protect organs
 - Provide surface for muscle attachments
 - Scapulae
 - Sternum
 - Ribs
 - Patellae
 - Some bones of the skull

Irregular Bones
- Have different shapes to serve different functions
 - Vertebrate
 - Sacrum
 - Coccyx
 - Maxilla

Long Bones
- Framework of the appendicular skeleton
 - Humerus
 - Radius
 - Ulna
 - Femur
 - Tibia
 - Fibula

Epiphyseal Plates
- Growth Centers allowing bones to grow in length
- New bone cells are produced by osteoblasts until plate closure

Bone Growth in Circumference
- Inner layer of the periosteum builds concentric layers of new bone on top of existing bone
 - Osteoblasts
 - Build new bone tissue
 - Osteoclasts
 - Resorb old bone tissue
Training Bones???
- Bones respond to training… and or lack of training
- According to Wolff’s Law
 - Densities
 - Sizes
 - Shapes
 Are determined by the magnitude and direction of forces

Wolff’s Law
- Osteoblasts and osteoclasts are continually building and resorbing bone
- Increases and decreases in stress influence osteoblast/osteoclast activity

Increasing Bone Density
- Weight Bearing Exercise

Diminishing Bone Density
- Lack of weight bearing exercise
- Spending excessive time in water
 - Bed Rest
 - Space Travel

Osteoporosis
- Disorder involving decreased bone mass and strength
- Can result in:
 - Pain
 - Fractures
 Due to daily activities

Osteoporosis Effects
- Type I
 - Postmenopausal
 - Affects 40% of women after age 50
- Type II
 - Age-associated
 - Affects most men and women after age 70
- Female Athlete Triad
 - Disordered eating
 - Amenorrhea
 - osteoporosis
Prevention and Treatment of Osteoporosis

• Regular weight bearing exercise
• Postmenopausal women hormone replacement
• Adequate dietary calcium and vitamin D
• Avoid
 – Smoking
 – Excessive protein consumption
 – Caffeine
 – Alcohol