Lymphatic System: Overview

- Consists of two semi-independent parts:
 - A network of lymphatic vessels
 - Lymphoid tissues and organs scattered throughout the body
- Returns interstitial fluid and leaked plasma proteins back to the blood
- Lymphoid organs house phagocytic cells and lymphocytes
- Lymph – interstitial fluid once it has entered lymphatic vessels
Lymphatic System: Overview

Regional lymph nodes:
- Cervical nodes
- Axillary nodes
- Inguinal nodes

Entrance of right lymphatic duct into right subclavian vein
- Internal jugular vein
- Entrance of thoracic duct into left subclavian vein
- Thoracic duct
- Aorta
- Cisterna chyli
- Lymphatic collecting vessels

(a)

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Figure 20.2a
Lymphatic System: Overview

Figure 20.1a
Lymphatic Vessels

- Fluid & plasma proteins are not all resorbed at the capillary beds and must be returned to the blood to maintain blood volume

 …lymphatic vessels accomplish this

- One-way system, lymph flows toward the heart

- Lymph vessels include:
 - Microscopic, permeable, blind-ended capillaries
 - Lymphatic collecting vessels
 - Trunks and ducts
Lymphatic Vessels

- Lymphatic vessels begin at the blind-ended capillaries that weave between the tissue of the body

- Lymphatic capillaries are widespread, but are absent in: bones, bone marrow, teeth, CNS

- Lymphatic capillaries are incredibly permeable, much more so than blood capillaries

- This is due to:
 - Loose fitting endothelial cells with weak cell-cell junctions thus forming minivalves
 - Collagen filaments preventing vessels from collapsing
 - Thus they form a one-way corridor
Lymphatic Capillaries

- Similar to blood capillaries, with modifications:
 - Very permeable
 - Loosely joined endothelial minivalves
 - Withstand interstitial pressure and remain open
- The minivalves function as one-way gates:
 - Greater interstitial fluid pressure, gates open
 - Greater internal lymph vessel fluid pressure, gates close preventing back-flow
Lymphatic Capillaries

- Filaments anchored to connective tissue
- Endothelial cell
- Flaplike minivalve
- Fibroblast in loose connective tissue

Figure 20.1b
Lymphatic Capillaries

- Inflammation results in the lymph capillary valves to open even wider to allow the following items to be absorbed:
 - Cell debris
 - Pathogens
 - Cancer cells
- Cells in the lymph nodes cleanse and “examine” this debris
- Lacteals – specialized lymph capillaries present in intestinal mucosa
 - Absorb digested fat and deliver chyle (white lymph) to the blood
Lymphatic Collecting Vessels

- From the lymph capillaries, lymph flows to collecting vessels
 - Collecting vessels have the same three tunics as veins, but have thinner walls, with more internal valves and anastomose more frequently
- Collecting vessels (lymphatics) in the skin travel with superficial veins
- Lymphatics of the trunk and digestive viscera travel with arteries
Lymphatic Trunks

- From the lymphatics (collecting vessels), lymph travels to lymphatic trunks.
- Lymphatic trunks are formed by the union of the largest collecting vessels.
- Major trunks include:
 - Paired lumbar, bronchomediastinal, subclavian, and jugular, and an intestinal trunk.

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings
Lymphatic Ducts

- From the lymphatic trunks, lymph is delivered to one of two lymphatic ducts:
 - Right lymphatic duct – drains the right upper arm and the right side of the head and thorax
 - Thoracic duct – arises from the cisterna chyli and drains the rest of the body
- Both empty into the venous circulation at the junction of the internal jugular vein and subclavian vein on its respective side
Lymph Transport

- The lymphatic system lacks a pumping organ
- Vessels are low-pressure conduits
- Uses the same methods as veins to propel lymph:
 - Contraction of skeletal muscles
 - Thoracic contraction during respiration
 - Pulsations of nearby arteries
 - Constrictions of smooth muscle in the walls of the lymphatics
Lymphoid Cells & Lymphocytes

- Lymphocytes are the main cells involved in the immune response
- They mature into T cells & B cells
- T cells and B cells protect the body against antigens
 - Antigen – anything the body perceives as foreign
 - Bacteria and their toxins; viruses
 - Mismatched RBCs or cancer cells
Lymphocytes

- T cells (Thymus)
 - Manage the immune response
 - Attack and destroy foreign cells
- B cells (Bone Marrow)
 - Produce plasma cells, which secrete antibodies
 - Antibodies immobilize antigens and “tag” them for destruction by leukocytes
Other Lymphoid Cells

- Macrophages – phagocytize foreign substances and help activate T cells
- Dendritic cells – capture antigens and bring them back to the lymph node
- Reticular cells – fibroblast–like cells that produce a stroma, or network, that supports other cell types in lymphoid organs
Lymphoid Tissue

- Composed of loose reticular tissue

- Functions to:
 - House and provide proliferation site for lymphocytes
 - Surveillance:
 - Macrophages & lymphocytes live on the fibrous tissue
 - Lymphocytes cycle between circulatory vessels, lymphoid tissue, and loose connective tissue of the body
 - can move quickly from one to the other
Lymphoid Tissue

- Diffuse lymphatic tissue – scattered reticular tissue elements in every body organ
 - Larger collections appear in the lamina propria of mucous membranes and lymphoid organs
- Lymphatic follicles (nodules) – solid, spherical bodies consisting of tightly packed reticular elements and cells
 - Germinal center composed of dendritic and B cells
 - Found in isolation and as part of larger lymphoid organs
Lymph Nodes

- Principal lymphoid organs of the body
- Embedded in connective tissue and clustered along lymphatic vessels
- Aggregations of these nodes occur near the body surface in various regions of the body
Lymph Nodes

- Two basic functions:
 - Filtration – macrophages in the nodes remove/destroy microorganisms and debris preventing its delivery to the blood
 - Immune system activation – lymphocytes in the nodes monitor lymph for antigens and mount an attack against them
Structure of a Lymph Node

- Nodes are <1” in length, bean shaped, and surrounded by a fibrous capsule
- Trabeculae (connective tissue) extended inward from the capsule and divide the node into compartments
- Nodes have two histologically distinct regions: a cortex and a medulla
Structure of a Lymph Node

- Cortex contains follicles with germinal centers, heavy with dividing B cells
- Dendritic cells nearly encapsulate the follicles
- Deep cortex houses T cells in transit
- T cells circulate continuously among the blood, lymph nodes, and lymphatic stream
Structure of a Lymph Node

- Medullary cords extend from the cortex and contain B cells, T cells, and plasma cells
- Throughout the node are lymph sinuses crisscrossed by reticular fibers
- Macrophages reside on these fibers and phagocytize foreign matter
Circulation in the Lymph Nodes

- Lymph enters via afferent lymphatic vessels
- It then enters a large subcapsular sinus and travels into smaller sinuses of the cortex and medulla
- It meanders through these sinuses and exits the node at the hilum (hilus) via efferent lymphatic vessels
- Because there are fewer efferent vessels, lymph stagnates somewhat in the node
- This allows lymphocytes and macrophages time to carry out protective functions
Other Lymphoid Organs

- Tonsils (in pharyngeal region)
- Thymus (in thorax; most active during youth)
- Spleen (curves around left side of stomach)
- Peyer’s patches (in intestine)
- Appendix

Figure 20.5
Other Lymphoid Organs

- The spleen, thymus gland, and tonsils
- Peyer’s patches and bits of lymphatic tissue scattered in connective tissue
- All are composed of reticular connective tissue, except the thymus
- All help protect the body
- Only lymph nodes filter lymph
Spleen

- Largest lymphoid organ (fist-sized), located on the left side of the abdominal cavity beneath the diaphragm

- Blood-rich

- It is served by the splenic artery and vein, which enter and exit at the hilum

- Functions:
 - Site of lymphocyte proliferation
 - Immune surveillance and response
 - Cleanses the blood: extracts aged and defective blood cells and platelets. Macrophages remove debris and foreign matter from blood flowing thru its sinuses
Additional Spleen Functions

- Stores breakdown products of RBCs for later reuse
 - Spleen macrophages salvage and store iron for later use by bone marrow
- Site of fetal erythrocyte production (normally ceases after birth)
- Stores blood platelets
Structure of the Spleen

- Surrounded by a fibrous capsule, it has trabeculae that extend inward and contains lymphocytes, macrophages, and huge numbers of erythrocytes.

- Two distinct areas:
 - White pulp – containing mostly lymphocytes suspended on reticular fibers and involved in immune functions. Forms a “cuff” around central arteries forming islands in a sea of...
Thymus

- A bilobed organ that secretes hormones (thymosin and thymopoietin) that cause T lymphocytes (T cells) to become immunocompetent (functional)

- Size of the thymus varies with age:
 - In infants, it is found in the inferior neck and extends into the mediastinum where it partially overlies the heart
 - It increases in size and is most active during childhood
 - It stops growing during adolescence and then gradually atrophies
Internal Anatomy of the Thymus

- Thymic lobes contain an outer cortex and inner medulla
- Cortex contains densely packed lymphocytes and scattered macrophages
- Medulla contains fewer lymphocytes and thymic (Hassall’s) corpuscles
Thymus

- The thymus differs from other lymphoid organs in important ways
 - It functions strictly in T lymphocyte maturation
 - It does not directly fight antigens
 - The stroma of the thymus consists of star-shaped epithelial cells (not reticular fibers)
 - These thymocytes secrete the hormones that stimulate lymphocytes to become immunocompetent
Tonsils

- Simplest lymphoid organs; form a ring of lymphatic tissue around the pharynx

- Location:
 - Palatine tonsils – either side of the posterior end of the oral cavity
 - Lingual tonsils – lie at the base of the tongue
 - Pharyngeal tonsil (adenoid) – posterior wall of the nasopharynx
 - Tubal tonsils – surround the openings of the auditory tubes into the pharynx
Tonsils

Palatine tonsils
Tonsils

- Lymphoid tissue of tonsils contains follicles with germinal centers
- Tonsil masses are not fully encapsulated
- Epithelial tissue overlying tonsil masses invaginates, forming blind-ended crypts
- Function in gathering/removing pathogens entering the pharynx from food and inhaled air
- Crypts trap and destroy bacteria and particulate matter
Aggregates of Lymphoid Follicles

- Peyer’s patches – isolated clusters of lymphoid tissue, similar to tonsils
 - Found in the wall of the distal portion of the small intestine
 - Similar structures are found in the appendix

- Peyer’s patches and the appendix:
 - Destroy bacteria, preventing them from breaching the intestinal wall
 - Generate “memory” lymphocytes for long-term immunity
MALT

- MALT – mucosa-associated lymphatic tissue:
 - Peyer’s patches, tonsils, and the appendix (digestive tract)
 - Lymphoid nodules in the walls of the bronchi (respiratory tract)
- MALT protects the digestive and respiratory systems from foreign matter
KU Game Day!!