Brief Announcement: Opportunistic Information Dissemination in Mobile Ad-hoc Networks: adaptiveness vs. obliviousness and randomization vs. determinism

Martín Farach-Colton1 Antonio Fernández Anta2 Alessia Milani3
Miguel A. Mosteiro4 Shmuel Zaks5

1Department of Computer Science, Rutgers University & Tokutek Inc.
2Institute IMDEA Networks
3LABRI, University of Bordeaux 1
4Department of Computer Science, Rutgers University & LADyR, GSyC, Universidad Rey Juan Carlos
5Department of Computer Science, Technion

DISC 2011
Mobile Ad-hoc Network (MANET)

- Mobile set of nodes (processors with radio)
- No stable communication infrastructure
- Multihop network

E.g.
Opportunistic Communication

Thanks to mobility and asynch activation, communication between x and y is feasible even if a path never exists! (a *chrono-path*)
The Dissemination Problem

Some information held by a given source node x at time t, must be disseminated to some set of nodes $S \subset V$.

In order to prove lower bounds we use Geocast.
Model

- **Network:**
 - \(n \) mobile nodes deployed in \(\mathbb{R}^2 \)
 - slotted time steps:
 - slot length dominated by communication time
 - same for all nodes

- **Node:**
 - unique ID in \([n]\)
 - may start/fail at any time slot
 - radio communication:
 - unique radio channel \(\implies \) collisions
 - background noise \(\equiv \) collision noise \(\implies \) no collision detection
 - no simultaneous reception & transmission
 - limited range \(r \implies \) multihop network
Model

- **Adversary:**
 - initial position and movement
 - de/activation schedule *(lower bounds don’t use it!)*

limited by three parameters:

- a maximum speed \(v_{\text{max}} > 0 \)
- the system must be \((\alpha, \beta)-\text{connected}\), \(\alpha, \beta \in \mathbb{Z}^+\)

Definition \(((\alpha, \beta)-\text{connectivity})\)

While moving at \(\leq v_{\text{max}} \) speed, \(\forall \) non-trivial partition \((S, \overline{S})\),

\[\exists \leq \alpha \text{ consecutive steps without a } \beta\text{-stable edge between } S \text{ and } \overline{S}. \]

(an edge is \(k\)-stable at time \(t\) if it exists for \(k\) consecutive steps \([t, t + k - 1]\))
Model

(α, β)-connectivity, for the partition defined by the information
Randomized Protocols:

- **oblivious** [C’01]: protocol access sequence of random variables at each node, independent of execution and mutually independent.

- **locally adaptive**: same but rv’s may be mutually dependent. (still independent of the execution)

- **fair** [C’01]: all nodes transmit with same probability in any given time step. (orthogonal def)
Results

<table>
<thead>
<tr>
<th></th>
<th>randomized</th>
<th>deterministic [FMMZ’10]</th>
</tr>
</thead>
<tbody>
<tr>
<td>l.b.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oblivious</td>
<td>$w.p. \geq 2^{-n/2} \Rightarrow \Omega (\alpha n + n^2 / \log n)$</td>
<td>$\Omega (\alpha n + n^3 / \log n)$</td>
</tr>
<tr>
<td>adaptive</td>
<td>$\Omega (\alpha n + n^2 / \log n)$ exp.</td>
<td>$\Omega (\alpha n + n^2)$</td>
</tr>
<tr>
<td>fair</td>
<td>$w.p. \geq 2^{-n/2} \Rightarrow \Omega (\alpha n + n^2 / \log n)$</td>
<td>–</td>
</tr>
<tr>
<td>u.b.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oblivious</td>
<td>$O (\alpha n + (1 + \alpha/\beta) n^2 / \log n)$ w.h.p.</td>
<td>$O(\alpha n + n^3 \log n)$</td>
</tr>
<tr>
<td>adaptive</td>
<td>–</td>
<td>$O(\alpha n + n^2)$</td>
</tr>
<tr>
<td>fair</td>
<td>$O (\alpha n + (1 + \alpha/\beta) n^2 / \log n)$ w.h.p.</td>
<td>–</td>
</tr>
</tbody>
</table>
Conclusions

- local adaptiveness \(\Omega \left(\alpha n + \frac{n^2}{\log n} \right) \exp \)

 does not help w.r.t. obliviousness \(O \left(\alpha n + \left(1 + \frac{\alpha}{\beta} \right) \frac{n^2}{\log n} \right) \) whp.

- linear separation between oblivious randomized \(O \left(\alpha n + \left(1 + \frac{\alpha}{\beta} \right) \frac{n^2}{\log n} \right) \) whp

 and oblivious deterministic \(\Omega \left(\alpha n + \frac{n^3}{\log n} \right) \).

- log separation between adaptive randomized \(O \left(\alpha n + \left(1 + \frac{\alpha}{\beta} \right) \frac{n^2}{\log n} \right) \) whp

 and adaptive deterministic \(\Omega \left(\alpha n + n^2 \right) \).
Thank you